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Representing and Selecting Vibrational Angular Momentum States for Quasiclassical
Trajectory Chemical Dynamics Simulations'

I. Introduction

Classical trajectory simulations are widely used to study the
atomic-level dynamics of molecular collisiohdf quantum
effects, such as tunnelifginterferences,and the unphysical
flow of zero-point energy;® do not dominate a chemical process,
then numerous studigmdicate that classical mechanics gives
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Linear molecules with degenerate bending modes have states, which may be represented by the quantum
numbersN andL. The former gives the total energy for these modes and the latter identifies their vibrational
angular momentum. In this work, the classical mechanical analog of Mie-quantum states is reviewed,

and an algorithm is presented for selecting initial conditions for these states in quasiclassical trajectory chemical
dynamics simulations. The algorithm is illustrated by choosing initial conditions faXthe3 andL = 3 and

1 states of C@ Applications of this algorithm are considered for initial conditions without and with zero-
point energy (zpe) included in the vibrational angular momentum states and-tBes€etching modes. The
O-atom motions in thex,y-plane are determined for these states from classical trajectories in Cartesian
coordinates and are compared with the motion predicted by the normal-mode model. They are only in agreement
for theN = L = 3 state without vibrational angular momentum zpe. For the remaining states, the Cartesian
O-atom motions are considerably different from the elliptical motion predicted by the normal-mode model.
This arises from bendstretch coupling, including centrifugal distortion, in the Cartesian trajectories, which
results in tubular instead of elliptical motion. Including zpe in the@stretch modes introduces considerable
complexity into the O-atom motions for the vibrational angular momentum states. The short-time O-atom
motions for these trajectories are highly irregular and do not appear to have any identifiable characteristics.
However, the O-atom motions for trajectories integrated for substantially longer period of times acquire unique
properties. With C-O stretch zpe included, the long-time O-atom motion becomes tubular for trajectories
integrated to~14 ps for theL = 3 states and te-44 ps for theL = 1 states.

present in linear molecules and arise from a pair of degenerate
linear bending motion¥*~17 Previously, Schat$ and Child®
described the semiclassical states for these degenerate bends.
In this article an approach is described for selecting quasiclas-
sical initial conditions for vibrational angular momentum states

of polyatomic molecules, and contact is made with the previous

a very good representation of the system’s chemical dynamics.
The agreement between experiment and simulation is often
enhanced if initial conditions are chosen for the reactants to
represent their quantum vibrational and rotational steléese

initial conditions are called quasiclassical and are selected for
an ensemble of trajectories with proper weighting of coordinate

and momenta phase space points. Such quasiclassical trajector

simulations have included studies of gas-phase;-gadace,

semiclassical work819The quantum mechanical description of
the vibrational angular momentum states, and their semiclassical
and classical analogues, are described in Section Il. Selecting
guasiclassical initial conditions for the normal modes of the
molecule, including vibrational angular momentum states, is
described in Section lll. lllustrations of choosing quasiclassical
initial conditions for the stretch and degenerate bend modes of
t0, are described in Section IV. A summary is given in
Section V.

and condensed-phase chemical dynamics. lllustrative examples

of the accuracy of the simulations include calculations of
intramolecular vibrational energy relaxation tinfdsimolecular
cross sectiongunimolecular product energy partitionifgas-
surface collisional energy transfér,and photodissociation
dynamicst!

In recent experiments;13 NO," + rare-gas and N& +
C;H; collisions have been studied with MO prepared in

specific vibrational angular momentum states. These states are
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II. Vibrational Angular Momentum States

A. Quantum Mechanical RepresentationFor the harmonic
oscillator and separable rotatiemibration model, the total
energy for a linear molecule’s pair of normal-mode degenerate
bends is given by eq ¥ 17
E=(n,+ 1/2hv+ (n,+ 1/2hv=(N+ Lhv (1)
where then's are the bends’ vibrational quantum numbers, and

ny + np. Each value ofN is associated witiN + 1
degenerate energy levels and wave functiif(si,,n,) corre-
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sponding to different possible combinationsmfandn,. The mode motion associated with the degenerate bends is described
wave functions aréP(2, 0), W(1, 1), and¥(0, 2) for theN = in the next section.
2 degenerate vibrational levels. Classically, if both modes are  C. Classical Mechanical RepresentationDepending on the
excited, as for theV(1, 1) state, then the bending vibrations relative phase of the two degenerate bend modes, the classical
give rise to vibrational angular momentumabout the inter- motion for their zero-point energy (zpe) level may contain
nuclearz-axis4-17 vibrational angular momentum. In the following, classical
Though the wave function¥(n,,n,) provide an adequate representations of the degenerate linear bends are described with
description of the bending vibrations, any proper linear com- and without zpe. The condition considered is the one in which
bination of the wave functions for the degenerate levels also each of the bend modes contains the same energy.
furnishes an adequate representation. The vibrational angular 1. Vibrational Angular Momentum zpe Not Includékthe
momentum is not quantized by thié(n, ny) states, and itis of ~ energy in each degenerate bendNiw/2, if each of the bends
particular interest to choose a linear combination that satisfies has the same energy and if zpe is not included. The valle of
this quantization. The exact form of this linear combination is is set by the difference in the phase of the two bending motions.
described elsewhef& 17 For the current presentation itis only  The classical energy for each bend mode, as denoted by that
necessary to know that these wave functions are eigenfunctionsfor mode a, is given by eq 6,
of both the vibrational Hamiltonian and vibrational angular
momentum operators, giving rise b+ 1 degenerate energy E,=Nh/2= (Pa2 + /1Qa2)/2 (6)
levels with E = (N+1)hv. The vibrational angular momenta
for the states arp = LA, with L = N, N—2, ... —(N—2), —N. with maximumP, andQ, of P° = (2Ey)Y2andQ° = (2E4/1)Y2
B. Semiclassical Mechanical RepresentatiorChild® has One co-ordinate moves in thezplane and the other in the
described degenerate harmonic oscillators in terms of semiclas-Y,zplane, and their time dependencies may be written by egs
sical action-angle variables and provided the relationship 7a-b,
between the oscillator's semiclassical and quantum mechanical

descriptions. The degenerate bend’s classical Hamiltonian is QA = Q° cos(2rut) (7a)
iven by eq 2, o
given by eq Q, At = Q° cos(2rt — ¢) (7b)
H= (P2 + P2+ Q7+ Q)2 (2)

where ¢ is the difference in the phase of the two bends. For
thex,zbend, at = 0 all of the energy is potential. The normal-

where, the bend’s normal-mode eigenvalue, equaid4 and mode momenta are the time derivatives of these coordinates

P, and Q, are the normal mode’s momentum and co-ordinate,

respectively. The actions are shown in eqs 3 and 4, (ie.. eqs 8ab).
P, (t) = —P° sin(2rut 8
j,=Lh (4) P, At) = —P°sin(2tut — ¢) (8b)

and their associated angle variables, which range between 0 and 1he vibrational angular momentum is given by eq 9.

27, areoy ando,, respectively. The energy for the degenerate i,=QP,,— QP 9)
bends isE = lw, wherew = 27v. As discussed in the next z Xz .z Y.z xz

section, the motion associated with the 2-dimensional (2D) The maximum value for the vibrational angular momentum (i.e.,
Hamllltonlan of thg degenerate bend.s is elllptlcql, where i, = NK) occurs when the two modes are°@ut-of-phase (i.e.,
describes the motion around the ellipse, agddefines the = 90°). For this case, when thezmode is at its classical

orientation of the maj_or-axis of the ellipse i_n the molecglar turning point with all of its energy in potential, thezmode is
plane. The transformations between these action-angle variablesy; jis potential minimum with all of its energy in kinetic. This

and the normal-mode coordinates and momenta are given byqongition may be used to determine the vibrational angular

eqs Sa-d. momentum, which i§, = Q°P° = Nh. For theL = —N state,
) 12 the sign ofP° is reversed. The value @f for the remaining-
Q.= [(I +])lw] " cosfy + ) (5a) states is found by setting thezmode at its classical turning
point, as above, with all of its energy in potential and choosing
Q, = [(I —j,)w]"*cosgy, — ) (5b) a value ofPy , for motion in they,zplane, so that the vibrational

angular momentum equalsh. Thus,j, = Q°Py, = LA with

_ : 12 o Py/P° = L/N. From egs 8a and 8b, the phase difference between
Pa [(1 ] )] sin(e, + a) (5¢) the motions in thex,z andy,zplanes is therp = sin"Y(L/N),
) V2 so that the vibrational angular momentum becomes eq 10.
Q.= —I[(I + ] )lw] "sinfy — o) (5d)

j,=Q°P°sing = NA sing (10)
The above equations suffice for choosing initial conditions

for the degenerate bend’s 2D Hamiltonian. The energy and The initial value forQy , for motion in they,zplane, is [E,
angular momentum for the quantum state are given by the — (P° sin¢)?]/2. ForL = 0, ¢ = 0 and the two modes vibrate
actionsl andj,, and the angles, anda; are chosen randomly in-phase. When th&,zmode is at its classical turning point
between 0 ands2 However, for the problem considered here, With Q= Q°, the coordinate for th€, , mode is alsaQ”.
initial conditions are chosen for all 3~ 5) degrees of freedom The rotational energy associated with the vibrational angular
of the molecular Hamiltonian. For this multidimensional Momentum is given by eq 11,
sampling, it is convenient to choose initial conditions using o
normal-mode coordinates and momenta. The classical normal- Eo =172, (11)
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wherej, = LA, andl_ is the moment of inertia for the state. Without vibrational angular With vibrational angular
As described above, for tHe = 0 state, the two bend modes . mm"?"mpe ' momenum e
vibrate in-phase with their energy oscillating between all- L= =3

potential and all-kinetic with a period of 1428 There is no
rotational angular momentum, aig; = 0. For theL = N state, oSk 1 o5
I_ is a constant and does not change during the vibrational
motion. For the mass-weighted normal-mode coordinates, this ¢} 1 oof
IL is given byl = (Q°)2. This is seen by replacing in eq 7b

by 9C°, so thatQy At) = Q° sin(2rut). The mass-weighted radius- s
squared for the vibrational angular momentum motion is then
[QAt)? + QA1) = (Q°)% Becausg, = Q°P° for theL = N

05

state,Eot is (P°)%/2 = E,. Thus, one-half of the total enerdy 10 y ) Py o % v v Py o
for the two bending modes is rotational, and the other half is
the potential energy of the fixed radius rotation. o — - ' L
For the remainingd. states], is not a constant and is given
by eq 12. 05 1 05F
_ 2 2

L)) = Q)"+ QA (12) |l
Thus, the rotational energy of the degenerate bends changes
with time. The average value fdr(t) may be determined by s} 1 ost

inserting the expressions in eqs 7a and 7bGext) andQy A1)
into eq 12 and averaging over one vibrational period (i.e., eq | o

13) i -1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 10

Figure 1. Plots ofQ,At) versusQy At) for CO,, with CO; prepared in

onp (vt vl vibrational angular momentum states with= 3 andL = 3 and 1.
0, (0= (Q°) [!/(‘) C0§(2”Vt) dt + J(‘) C0§(2m/t T The motion is determined from egs 3a and 3b of the normal-mode
) dt]/vﬂ (13) model. Plots are given for states with and without vibrational angular
¥ momentum zpe. The normal-mode coordinates are in units of

It is straightforward to show that the integrals in brackets is @mMu}? A.

equal tor1, so that<I_(t)> = (Q°)2 Thus, for the vibrational
angular momentum states with= |N|, the average rotational
energy of the degenerate bend motions is given by eq 14.

Because the two bends are nof @uit-of-phase for thé =

N state, the motion associated with the vibrational angular

momentum for this state is not circular but is elliptical, as are
o 2 02 _ 2 the otherL-states. Thus, the rotational energy for ehestate

B = smch(Nh) 2@y = (UN) B2 (14) is an average for one vibrational period ang)i/s found from the

average moment of inertia (i.esI (t)> in eq 13). The

expression for<E;.> is given by eq 16 and is similar to eq

14.

whereE is the total energy. This expression also holds for the
L = |N| states withp = 90°. However, as described above for

these states; ot is constant during the bending vibration, and

an average is not required.

2. Vibrational Angular Momentum zpe Includedith zpe
included, the total classical energy for the two bend modes is .
E = (N + 1)he. The energy of the zpe levellis and, depending ~ 1he total energyE is (N + 1)ho. _ _
on the relative phase of the two modes, this level can have 3. CI_as&_caI Motlor_llt is of |nt_erest to cons_lderthe (;Iass_lcal
vibrational angular momentuj If the two modes are in-phase dynamics in Cartesian coordinates for different vibrational
thenj, = 0, butj, = # if they are 90 out-of-phase. As discussed angular momentum states of the above normal-mode model,

above, quantum mechanically, the zpe level does not have@nd Figure 1 gives plots @ A1) versusQy A1) (i.e. Eqs 7a and
vibrational angular momentum. Nonzero values jofare 7b, for CQ). The vibrational frequency for the degenerate linear
associated with excited bend levels, wjiti= LA, L = N, N—2, bend is 667 cm'. The phase angle is 90" for theL =N =
..—(N=2), =N, andN = n, + n,. The vibrational angular 3 State, with no zpe, and the motion is circular. The remaining
momentum is given by eq 15. three states have a phase angle less thana®@ their motion
is elliptical. Because the normal-mode model has a linear
j;=(N+ Dhsing (15) transformation between normal-mode coordinates and Cartesian
displacement coordinaté%these plots also describe the motion
With zpe included, the maximum value for the relative phase of each of the O-atoms in they-plane. For the one state it is

<E, > = [LIN + 1)]°E/2 (16)

(¢) between the two bend modes is less thah @0 the L = circular, but it is elliptical for the other thrgé:1517

IN| states, because settigg= 90° results inj, = (N + 1)h. For the motions in Figure 1, each of the degenerate bends
The selection ofp for different L-states, includind- = |N|, contains one-half of the total energy, and this fixes the major-
follows the presentation in the previous section. kzemode axis at 45 from thex- andy-axes of the plane for their elliptical

is placed at its classical turning point wiQx — Q° andPx,= motion. Random orientation of the major-axis in this plaag (

0. A value for the momentun®y(,) for the other mode is chosen for the semiclassical description in Section II.B) is obtained by
so that the vibrational angular momentum equits The randomly rotating the molecule (see the next section).
resulting value ofPy, is P°L/(N +1), so thatj, = Q°Py, = The motions in Figure 1 are initiated with trgzmode at its

Q°P°L/(N + 1) = Lh. The phase difference between the motions classical turning point, an@y; is set by the phase angje(eq
in the x,z- andy,z-planes is therp = sin"1[L/(N + 1)]. For the 7b). For this 2D model, the resulting motion is independent of
L = N state,¢ = 90° andg = sin[N/(N + 1)]. the initial value forQx; and will lie on the circle/ellipse in
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Figure 1. However, as described in the following, the interest andl ~1is the inverse of the inertia tens&r(8) The rotational

here is in including vibrational angular momentum states as partenergy E°) is calculated from angular momentum compo-
of the (3 — 5) vibrational degrees of freedom of a linear nents and the principal moments of inertia. The total energy of
molecule. All of these degrees of freedom are coupled, and thethe molecule is the sum of its vibrational and rotational energies,
classical motion (i.e., trajectory) for the molecule will depend that is,E° = E°  + E°. (9) The actual internal energ¥) for

on the initial value forQy . Thus, it is necessary to select the the Cartesian coordinates and momenta chosen from the above
initial value for Qy ; randomly, and this is done by choosing a steps is calculated using the correct Hamiltonian and compared
random phases2R for this mode so tha@y, = Q° cos(2rR).2 with the intended energye(). If they do not agree within some
The angle for mod&),, (eq 7b) is then 2R — ¢. HereRiis a acceptance criterion (i.e., 0.1% in VEN#§ the Cartesian

fresh random number between 0 and 1. coordinates and momenta are scaled assuming the energy is
guadratic in momenta and coordinate displacement from equi-

Ill. Selecting Initial Cartesian Coordinates and Momenta librium (i.e., eq 2.27 in ref 1). Any spurious center-of-mass

for Vibrational Angular Momentum States translational energy is subtracted from the molecule, and the

procedure loops back to step five where the spurious angular
momentum is calculated. If the energies do agree within the

molecule with degenerate bend motions, and vibrational anguIarf"“:c‘apt‘""'nce]c criterion, Lhe mfolecule is randomly rotated about
momentum states, may be selected by a minor modification of Its centclar-o. -':nass _|rt11t x?,g/,z .ramtla. |

an algorithm used to select quasiclassical initial conditions for B. /.-\go.nt. m wit ,,V' rational Angg ar Momentum.
polyatomic molecules. This algorithm, described in detalil Selecting initial conditions for a specific vibrational angular

previously is briefly reviewed in the following procedure: (1) Mementum state of a linear polyatomic molecule requires
The first step is to determine the molecule’s normal-mode choosing Cartesian coordinates and momenta for the molecule

frequencies ¢ = 27v) and normal-mode eigenvectdr ) by that correspond to its vibra.tiongl angular momentum quantum
diagonalizing its mass-weighted Cartesian force constant ma_numbersN andL, as we_II as Its V|bra_t|onal and external_ rotat|_on
trix.2% (2) For a mode-specific simulation, the quantum numbers duantum numbers. This is accomplished by the following minor
(n) for the normal-modes are either specified or chosen modlflcatlons of the above algorithm (1) In step 2 of the above
randomly from their Boltzmann distributions. The total vibra- /90rithm, the quantum numbers for the two degenerate bends

; : _ dnp) are equated. If zpe is not included, ener@y=
tional energy isE, = Y(ni +1/2)hw. (3) The normal-mode (N2 an . .
energies are transformed to normal-mode coordin&¥safd Nhu/2) is assigned to each of the bend modes, wherena +

. : _ Ny andv is the bend frequency. If zpe is includddl,= (N +
mggqeenzj)le'.?.hzy ﬁg?n22||n?n§dgngﬁdm FE) ha?tsaet:g:l ;‘?)(r:rz en g r{gal 1)hu/2 is assigned to each of the bend modes. (2) To assign the

Cartesian coordinatesand momenta for N atoms using the quantum numbet. to the degenerate bends, the normal-mode
normal-mode eigenvectdr.2° (5) Because normal modes are coordinates and momenta for the two bends are not chosen

approximate for finite displacemer®,a spurious angular rqndomly as describe;d in §tep 3 above. Ins.tead, they are chosen
momentum j¢) may arise following this transformatidAz. This with the proper relationship as described in Sections II.B and

A. Algorithm Without Vibrational Angular Momentum.
Initial Cartesian coordinates and momenta for a polyatomic

spurious angular momentum is calculated. (6) The rotational II.C, that is,
angular momentum and its components are added. A nonlinear e
molecule is treated as a symmetric top with rotational quantum Q, = Q" cos(2rR) (20a)
numbers] andK. If J andK are specified, the components of .
the angular momentum are found from eqs 1da P,= —P°sin(27R) (20b)
i=+vJ3+ 1R (17a) Q, = Q° cos(ziR — ¢) (20c)
i,=Kh (17b) P, = —P° sin(21R — ¢) (20d)
i.=(%—j)Ysin(2tR) (17¢) whereQ° = (2E/2)Y2, P° = (2E)'2, andA = 4722 If zpe is
X ‘ not included, then sip = L/N. With zpe included, sinp =
S 2 o L/(N + 1). TheR term is a random number between 0 and 1.
Iy = ("= 1) cos(zR) (17d) (3) With the equilibrium coordinates for the linear molecule

placed on thez-axis, the above normal-mode momenta and
coordinates for the two degenerate bends add angular momen-
tumj, = Lh about thez-axis. The total angular momentum added

to the moleculg® is then a vector sum of the rotational angular
momentumjx and the vibrational angular momentum The
vibrational angular momentujpis properly added by the phase
relationship between the two degenerate bend modes, and eqgs
18 and 19 in step seven of the above algorithm gpddfter

the Cartesian coordinates and momenta are scaled, e¢&018
ensure the molecule contains both the correct rotational and the
=i —i. (18) vibrational angular momenta.

whereR is a random number. For thermal experiments, it is
usually accurate to samglandj, from their classical Boltzmann
distributions?? with j andjy, found from eqgs 17c and 17d. The
componentsy, jy, andj,, form the desired angular momentum
vectorj°. Equilibrium coordinates for linear polyatomic mol-
ecules are placed on theaxis with its rotational angular
momentum ) initially along thex- or y-axis; e.g.j = jx. (7)
The angular momentui is added to the molecule by forming
the vector shown in eq 19,

IV. lllustrations of Choosing Initial Conditions for

and adding the rotational veloci ri to each of the atoms, . .
g Wy T Vibrational Angular Momentum States

where
The algorithm described above, for selecting vibrational
w= I_lj (19) angular momentum states as part of quasiclassical sampling of
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Without vibrational angular With vibrational angular Without vibrational angular With vibrational angular
momentum zpe momentum zpe momentum zpe momentum zpe
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Figure 3. Same as Figure 2, except a curvilinear transformation is
used for step 4 in Section Ill.A.

.00—%‘06 —O.‘Od —0‘.02 0.‘00 0}.!2 0_;]4 0‘06—0‘0-%.06 -0.04 »0.‘02 0.2)0 0.2)2 0.‘04 0.06
Figure 2. Plots of motion in the,y-plane for an O-atom of CQwith
CO; prepared in vibrational angular momentum states With 3 and
L =3 and 1. Zero-point energy is not included in the G®etch modes. There are several possible origins of the small fluctuations
Plots are given for states with and without vibrational angular away from “exact” circular motion for thé = N = 3 state
momentum zpe. Initial conditions are chosen for the trajectories wijthout vibrational angular momentum zpe. Centrifugal distor-
't:‘gé‘gt'gr?;:zrr:mg‘eartt:ja?Sf%'?at'onTﬁf séept4 n Secuog_lll.tA. The tion, which occurs as a result of the vibrational angular

! grated for 0.5 ps. The Lartesian coordinates are Ny omentum, elongates the-© bonds. This would increase the
units of angstroms. ! . ! .

moment of inertia for a fixed bend angle and cause a change in
OIthe bend angle to maintain the constant vibrational angular
momentum. Also, as pointed out in much earlier w&rieyven
if the potential energy function is harmonic in internal coordi-
nates, as is the case here, there are coupling terms in the
Hamiltonian. Such couplings between the bends and the
stretches may affect the circular motion. In addition, the
rectilinear transformatio®’, in step four of Section I1I.A, causes
a small extension 0f-0.007 A for each €0 bond, which
introduces a small vibrational motion in each bond and perturbs
the circular motion.

To assess the importance of the latter effect, a curvilinear
transformation from normal mode to Cartesian coordinates was
performed, which changes the bend angle without disturbing
the C-0O bond lengths. The resulting O-atom motion for e
. o andL states without and with vibrational angular momentum
tively, and an equm_brlu_m €0 bond length of 1.170 A, was zpe is shown in Figure 3. Comparing Figures 2 and 3 shows
used for these applications. that the curvilinear transformation results in a circular type

A. Initial Conditions with no Stretch zpe. Figure 2 gives  O-atom motion with somewhat weaker perturbations than those
plots of the O-atom motion in th&,y-plane for trajectories  found for the rectilinear transformation, but the perturbations
calculated for 0.5 ps with the above potential energy function remain. Apparently, centrifugal distortion and/or berstretch
and for theN = 3 state withL = 3 and 1. This integration time  couplings affect the motion of the = N = 3 state without
is on the order of magnitude of the time it takes for two reactants vibrational angular momentum zpe. The curvilinear initial
to collide in a trajectory simulation, given their initial separation. conditions for theL = N = 3 state give an O-atom motion
The initial conditions for the trajectories in Figure 2 have no comprised of G-O bond lengths that vary from 1.165 to 1.177
zpe in the CQ stretch modes. Without vibrational angular A and a G-C—0 angle that varies between 166.1 and 168.2
momentum zpe, the motion of the O-atom for the= N = 3 For the normal-mode model, these coordinates are fixed at 1.170
state is nearly circular and is similar to that for the normal- A and 167.15. As discussed below, using a high force constant
mode model in Figure 1. For the= 1 state without vibrational ~ for the C-0O bond stretch to approximately “fix” the bond at
angular momentum zpe and for the= 3 and 1 states with its equilibrium value and eliminate centrifugal distortion and
vibrational angular momentum zpe, the phase angle is less tharbend-stretch coupling results in a circular plot for the curvi-
90°, and the motion of an O-atom is that of a rotating ellipse linear model.
and not a “fixed elliptical”, as found from the normal-mode There are significant differences between the O-atom motion,
model. for the elliptical states, given by the normal-mode model in

vibrational and rotational energy levels, has been implemente
in the general classical trajectory chemical dynamics computer
program VENUS The algorithm is applicable to any vibra-
tional angular momentum state specified by the quantum
numbersN and L. In the following, the application of this
algorithm is illustrated by selecting vibrational angular momen-
tum states for C@with N = 3 andL = 3 and 1. Vibrational
angular momenturj} is added to the molecule, with no external
rotational angular momentum. Applications of this algorithm
are compared by selecting initial conditions with and without
zpe in both the vibrational angular momentum states and the
symmetric and asymmetric stretch modes. A harmonige CO
potential described previousty,with stretch and bend force
constants of 15.050 mdyn/A and 0.784 mdyn Afa@spec-
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o Figure 5. Same as Figure 3, except aO stretch force constant 1,-
© 6 000 times larger than the 15.050 mdyn/A value for the potential function
is used.
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Figure 4. Plot of the G-C—0 angle and €0 bond length vs time 000 r 1 oor |
for theN = 3, L = 1 trajectory in Figure 3, without vibrational angular \
momentum. ” oo

Figure 1, and the actual Cartesian dynamics in Figures 2 and 3.°% e om o0 0w o0 oo oo oo 00i 002 00 o0z ood o0
For these states the-@—0O angle is not fixed, and centrifugal
distortion, which is not allowed in the normal-mode model, is
an important contributor to the Cartesian dynamics. The angular |
momentum about theaxis (i.e.,j;) is a constant of the motion
and is related to the angular velociiy, via j; = lw;. As the
O—C—0 angle change$; changes, which causes to decrease ool
or increase. These changesan will perturb the C-O bond
lengths. In particular, as the angle increases, approachirfg 180
I, becomes quite small and results in a large angular velocity. |
This is expected to promote extension of the@bonds. Figure

4 giVeS pIOtS of the ©C-0 angle and the €0 bond Iength 0 oo 002 000 00 oo o0 hos 004 o0 00 o0 004 006
versus time for theN = 3, L = 1 state without vibrational Figure 6. Same as Figure 2, except the trajectory integration time is
angular momentum zpe and for the curvilinear transformation. 20 ps.

There is a regular “beat” between the bend angle and the bond
length, which affects the O-atom motion and gives the rotating

elliptical motion for the actual Cartesian dynamics. The@ - T .
bond length changes between 1.131 and 1.210 A. Th_e trajectories in Fl_gure 2 were calc_ulatc_ad for 0.5_ps, which,
] ) ) as discussed above, is a representative time required for two

Changes in the €0 bond length can be constrained by using reactants to collide in a bimolecular simulations. To obtain a
an artificially high force constant for the-€D bond stretch.  picture of the long-time O-atom motions for these trajectories,
Figure 5 shows the O-atom motion for the same states andthey were integrated for 20 ps, and the results are shown in
conditions as in Figure 3, except the-O stretch force constant  Figure 6. The motion for thé = 3 state, without vibrational
has been increased by a factor of 1,000. This results in a neal’|yangular momentum zpe, is similar to the short-time result.
exact circular motion for the = N = 3 state without vibrational ~ However, for the other three states, the short-time trajectories
angular momentum zpe and motion for the other states, which do not identify the long-time O-atom motions. The motion for
is no longer that of a rotating ellipse and begins to approach the L = 3 state with vibrational angular momentum zpe has a
that of a fixed ellipse. However, distortions in the elliptical tubular shape. For the= 1 states, there is an inner oval region

0.02 |

-0.02 -

motion remain as a result of small changes in theCCbond
lengths, which vary between 1.1701 and 1.1703 A.
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Figure 7. Same as Figure 2, except zpe is included in the stretch 0or
modes. These are representative trajectories for the vibrational angular o
momentum states (see text). The motion is plotted for 0.5 ps. ’

) o o 02 L . . . . .
Without vibrational angular With vibrational angular 02 -01 00 01 02 03 04 05

momentum zpe momentum zpe Figure 9. Plots of the O-atom motions, for tHe= 1 trajectories in
Figure 8, for 60 ps.

O-atom motions appear highly irregud&and is quite different
from those in Figures13.

To study the longer-time motions of individual trajectories
for the vibrational angular momentum states, 10 trajectories of
20 ps in length were calculated for each of these states. The
long-time motions are significantly different from the short-
time motions, and the 10 trajectories for each of the vibrational
angular momentum states have qualitatively similar motions.

-0.1 . A A -0.2

04 02 00 02 04 02 01 00 01 02 03 04 05 Furthermore, the trajectories with and without vibrational
o O angular momentum zpe, for either the= 1 or 3 state, are
ot o4t similar if they have the same random phases for th®Gtretch

modes. For both of the = 3 states, the motion is tubular, as

03+ 03}
6 shown in Figure 8. The motions of the 10 trajectories for each

state differ in the diameter of the tube and the size of the inner
region in which the trajectory does not move. The two
trajectories plotted for thé = 1 states are representative of
the 20 ps O-atom motions for these states. However, as shown
in Figure 9, if these trajectories are integrated for 60 ps their
overall motions are similar to those for the= 3 states. The
requirement of a longer integration time for the= 1 states, to
obtain the tubular motion found for tHe= 3 states, is related
to the different angular velocities for these two states, as shown
in the following.

An important question, for the states with-O stretch zpe,
is whether the vibrational angular momentygis primarily

02

01}

00

-01F

70%02 -0‘1 070 0?1 0‘2 0‘3 0?4 05 70‘2-02 -0‘1 0?0 0?1 0‘2 0?3 Df4 05
Figure 8. Same as Figure 7, except the trajectory motion is plotted
for 20 ps.

about thex,y-axis origin that is not accessible to the trajectories.
This region is larger for the trajectory without vibrational angular

momeqtgm. . . . about the G-C—0O internuclear axis. Plotted in Figure 10 are
B. Initial Conditions with Stretch zpe. A_ddlng zpe _to th_e graphs of the angle; between thez-axis and the ©0

C—0 bonds affects the atom|c-levgl dynamics for the vibrational jnternuclear axis versus time. The plots are very similar for
angular momentum states. In Figures 7 and 8, the O-atoMyajectories with and without vibrational angular momentum zpe
motion for representative trajectories of the vibrational angular if they have the same random phases in theOGstretch modes,
momentum states, with zpe in the stretch modes, is plotted for and the plots are only given for the trajectories without
different periods of time. Figure 7 depicts the motion for 0.5 vibrational angular momentum zpe. Plots for 10 trajectories are
ps, which is on the order of magnitude of the time it takes for included in each graph. An important observation from the plots
two reactants to collide in a trajectory simulation, given their is thaty is small and less than°Sor the approximate time of
initial separation. For the short-time dynamics in Figure 7, the 0.5 ps or less that it takes for two bimolecular reactants to collide
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Figure 11. Coordinate Fourier spectra of a classical trajectory for the
L = N = 3 vibrational angular momentum state, with vibrational angular
momentum zpe and without (upper) and with (lower)@ stretch zpe.
Spectra are shown for the symmetric stretBh= (Ar; + Arz)/v/2,
and the bend$; = A6. The trajectories for these spectra are shown in
Figures 6 and 8.

0 20 40 60 80 100 120 140 160 180
Time (ps) With vibrational angular
Figure 10. Plots versus time of the anglg)(between the-axis and momentum zpe
the O-0O internuclear axis, for trajectories calculated for the= 1 L3 ' ' '
and 3 states without vibrational angular momentum zpe. Plots for 10 010
trajectories are included in each graph. The upper graph ik fer3
and the lower one fot = 1. 005 |

in a chemical dynamics simulation. Thus, the vibrational angular
momentum is primarily about the internuclear axis as the
collision occurs. For longer times, the-angle appears to
oscillate periodically with a period of 13:8L5.1 ps for theL
= 3 states and 42:948.8 ps for theL = 1 states. For 10
trajectories with vibrational angular momentum zpe included, oo
these periods are 14-26.0 ps and 43:250.2 ps for thd. = '
3 and 1 states, respectively. The period is approximately 3 times
longer for thel = 1 state as compared to the= 3 state, which
is consistent with an approximate factor of 3 smaller angular
velocity for theL = 1 state. The maximum value of thheangle 04l
differs for the 10 trajectories in Figure 10 and varies from-7.5
33.6° for the L = 3 state and 5:524.8 for the L = 1 state. e
With vibrational angular momentum zpe included for the 10 02§
trajectories,ymax varies from 5.8—24.6° and 4.7—21.3 for ¢
the L = 3 and 1 states, respectively. Including vibrational
angular momentum zpe has the effects of increasing the period ool
for the y-angle motion and decreasing the valueygix

C. Regular Versus Irregular Motion and the Effect of
Anharmonicity. The plots in Figures 810 indicate that the 02
classical motion is regular and not irregular (i.e., chadtitgr Figure 12. The same plots as in the upper-right panels of Figures 7

the vibrational angular momentum states. To assess this in mOre, g, except a Morse function is used for the@stretch potential.

detail, coordinate Fourier spectfd® were calculated for  Tpe piot on the top is for 0.5 ps as in Figure 7, and that on the bottom
trajectories with vibrational angular momentum zpe and without is for 20 ps as in Figure 8. The trajectories include both vibrational

and with C-0O stretch zpe. The diagnostic for regular dynamics angular momentum and-€O stretch zpe.

is a sharp spectrum, versus a grassy spectrum for irregular

dynamics?®2° These trajectories have regular spectra, and for the vibrational angular momentum states considered here is
examples are illustrated in Figure 11. Thus, the classical motion regular with zpe in each degree of freedom.
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the trajectories are highly irregular and do not appear to have

frequencies are small, and their harmonic/anharmonic ratios areany identifiable characteristics. However, the O-atom motions

1.05, 1.03, and 1.02 for the symmetric stretch, bend, and
asymmetric stretch, respectivel}3! These small anharmonic
corrections are not expected to significantly alter the classical
motion for the CQ zpe level. Nevertheless, to investigate any
possible effects of anharmonicity, the-O bond stretches were

for trajectories integrated for substantially longer periods of time
acquire unique properties. Furthermore, for these longer integra-
tion times, trajectories with and without vibrational angular
momentum zpe are similar, for both the= 3 andL = 1 states,

if they have the same random phases for theQGstretch modes.

treated as Morse functions instead of the harmonic oscillators The long-time O-atom motion becomes tubular for trajectories

used for the above calculations. The dissociation enBegyas

set to 722 kJ/mot233 and this value and the force constant
15.050 mdyn/A for the harmonic modelwere used to
determine thes. parameter equal td/@De)2 = 2.51 AL, With

the inclusion of this anharmonicity, the classical motions of the

integrated to~14 ps for theL = 3 states and te-44 ps for the

L 1 states. For short integration times of 0.5 ps, an
approximate time it takes two bimolecular reactants to collide,
the vibrational angular momentugremains aligned along the
O—C-0 internuclear axis. However, for longer times this is

vibrational angular momentum states studied here are similarnot the case, and this property is studied by determining the

to those for the harmonic model. This is illustrated in Figure
12, where the results of calculations for the= N = 3 state,

with both vibrational angular momentum and stretch zpe, are
plotted. The plots in Figure 12 should be compared with those

time dependence of the angldetween the-axis and the 60
internuclear axis. Plots gf(t) are periodic, with a period of
~14—16 ps for theL = 3 states and-43—49 ps for theL = 1
states. The maximurg-angle in thesg(t) plots has a range of

in the upper-right panels of Figures 7 and 8, and it is seen thatvalues and depends upon the random phases for-tt €retch

the classical motions are very similar for the anharmonic and
harmonic potentials.

V. Summary

In this work, an algorithm for selecting quasiclassical initial
conditions for vibrational angular momentum states in chemical

modes.

The algorithm used here to choose quasiclassical initial
conditions for a polyatomic molecule, with degenerate bends,
assumes the vibrational energy is a sum of theH 1/2)hy;
nondegenerate bend normal-mode energies pus ()he for
the degenerate bends. This energy only approximates the
molecule’s actual vibrational energy levels, because it does not

dynamics simulations is presented and analyzed. Applications;nqjude couplings between the normal modes and the depen-

of this algorithm are considered for initial conditions without
and with zpe included in the vibrational angular momentum
states and the €0 stretching modes. The O-atom motions in
thex,y-plane, determined from classical trajectories in Cartesian

coordinates and from the normal-mode model, are compared

for theN = 3 andL = 3 and 1 vibrational angular momentum
states. The inclusion of zpe in the-© stretch modes has a
significant effect on the O-atom motions for the vibrational
angular momentum states. Without—O stretch zpe, the
normal-mode model predicts a fixed<&—0 angle for the

= N = 3 state and a circular motion in they-plane, with the
O—C—0 equilibrium structure lying on theaxis. For theN =

3 andL = 1 state, the @C—0 angle bends, and the motion is
elliptical.

For the classical trajectory calculations without Q stretch
zpe, the O-atom motion for the = N = 3 state without
vibrational angular momentum zpe is circular and is similar to
that for the normal-mode model. However, for the= N =3
state with vibrational angular momentum zpe and the ltwo
1 states without and with vibrational angular momentum, the
motion is not elliptical as it is for the normal-mode model. The
short-time (i.e., 0.5 ps motion) for these latter three states is
that of a rotating ellipse, whereas for long-times this ellipse
rotates around the origin in they-plane to form a tubular
structure. The origin of the difference between the actual

Cartesian O-atom motion and that predicted by the normal-mode

model arises from coupling between the-O—O bend and
C—0 stretch modes, including centrifugal distortion. Cartesian
O-atom motions, approximating the ellipse of the normal-mode
model, are obtained by using a very high force constant for the
C—0 stretch mode.

Including zpe in the €0 stretch modes introduces consider-
able complexity into the O-atom motions for the vibrational

dence of the energy on the vibrational angular momentum
guantum numbeL. A more accurate expression for the £0
energy is given by eq 2%,31.34.35

. 3 d, 3 ( di) q
E(cm 7)) = n +—|v,+ X +—=\n+—]+
( ) ; i 2 i ; ]; ij| " 2 j 2
%l? (21)

whered, the degeneracy of the mode, equals 2 for mode 2 and
equals 1 for modes 1 and 3. It would be of interest to use this
energy expression, for the quasiclassical sampling algorithm in
Section lll, so that this energy expression could be used to
choose initial conditions for the spectroscopic energy levels.
This may be done in the future.

As described above, the algorithm used here to select
quasiclassical initial conditions for vibrational angular momen-
tum states, is based on the zeroth-order normal-mode model.
In future work it may be of interest to use Einstein-Brillouin-
Keller (EBK) semiclassical quantizati&it*4 to determine
coordinates and momenta for a specific vibrational angular
momentum state. For the states without@ stretch zpe the
EBK quantization will depend on tHé andL quantum numbers,
and this 2D quantization may be relatively straightforward.
However, with C-O stretch zpe included, the quantization will
also depend on the symmetric and asymmetric stretch modes,
and this four-dimensional quantization will be more challenging.
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