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Linear molecules with degenerate bending modes have states, which may be represented by the quantum
numbersN andL. The former gives the total energy for these modes and the latter identifies their vibrational
angular momentumjz. In this work, the classical mechanical analog of theN,L-quantum states is reviewed,
and an algorithm is presented for selecting initial conditions for these states in quasiclassical trajectory chemical
dynamics simulations. The algorithm is illustrated by choosing initial conditions for theN ) 3 andL ) 3 and
1 states of CO2. Applications of this algorithm are considered for initial conditions without and with zero-
point energy (zpe) included in the vibrational angular momentum states and the C-O stretching modes. The
O-atom motions in thex,y-plane are determined for these states from classical trajectories in Cartesian
coordinates and are compared with the motion predicted by the normal-mode model. They are only in agreement
for the N ) L ) 3 state without vibrational angular momentum zpe. For the remaining states, the Cartesian
O-atom motions are considerably different from the elliptical motion predicted by the normal-mode model.
This arises from bend-stretch coupling, including centrifugal distortion, in the Cartesian trajectories, which
results in tubular instead of elliptical motion. Including zpe in the C-O stretch modes introduces considerable
complexity into the O-atom motions for the vibrational angular momentum states. The short-time O-atom
motions for these trajectories are highly irregular and do not appear to have any identifiable characteristics.
However, the O-atom motions for trajectories integrated for substantially longer period of times acquire unique
properties. With C-O stretch zpe included, the long-time O-atom motion becomes tubular for trajectories
integrated to∼14 ps for theL ) 3 states and to∼44 ps for theL ) 1 states.

I. Introduction

Classical trajectory simulations are widely used to study the
atomic-level dynamics of molecular collisions.1 If quantum
effects, such as tunneling,2 interferences,3 and the unphysical
flow of zero-point energy,4,5 do not dominate a chemical process,
then numerous studies6 indicate that classical mechanics gives
a very good representation of the system’s chemical dynamics.
The agreement between experiment and simulation is often
enhanced if initial conditions are chosen for the reactants to
represent their quantum vibrational and rotational states.1 These
initial conditions are called quasiclassical and are selected for
an ensemble of trajectories with proper weighting of coordinate
and momenta phase space points. Such quasiclassical trajectory
simulations have included studies of gas-phase, gas-surface,
and condensed-phase chemical dynamics. Illustrative examples
of the accuracy of the simulations include calculations of
intramolecular vibrational energy relaxation times,7 bimolecular
cross sections,8 unimolecular product energy partitioning,9 gas-
surface collisional energy transfer,10 and photodissociation
dynamics.11

In recent experiments,12,13 NO2
+ + rare-gas and NO2+ +

C2H2 collisions have been studied with NO2
+ prepared in

specific vibrational angular momentum states. These states are

present in linear molecules and arise from a pair of degenerate
linear bending motions.14-17 Previously, Schatz18 and Child19

described the semiclassical states for these degenerate bends.
In this article an approach is described for selecting quasiclas-
sical initial conditions for vibrational angular momentum states
of polyatomic molecules, and contact is made with the previous
semiclassical work.18,19The quantum mechanical description of
the vibrational angular momentum states, and their semiclassical
and classical analogues, are described in Section II. Selecting
quasiclassical initial conditions for the normal modes of the
molecule, including vibrational angular momentum states, is
described in Section III. Illustrations of choosing quasiclassical
initial conditions for the stretch and degenerate bend modes of
CO2 are described in Section IV. A summary is given in
Section V.

II. Vibrational Angular Momentum States

A. Quantum Mechanical Representation.For the harmonic
oscillator and separable rotation-vibration model, the total
energy for a linear molecule’s pair of normal-mode degenerate
bends is given by eq 1,15-17

where then’s are the bends’ vibrational quantum numbers, and
N ) na + nb. Each value ofN is associated withN + 1
degenerate energy levels and wave functionsΨ(na,nb) corre-
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E ) (na + 1/2)hV + (nb + 1/2)hV ) (N + 1)hV (1)
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sponding to different possible combinations ofna andnb. The
wave functions areΨ(2, 0), Ψ(1, 1), andΨ(0, 2) for theN )
2 degenerate vibrational levels. Classically, if both modes are
excited, as for theΨ(1, 1) state, then the bending vibrations
give rise to vibrational angular momentumjz about the inter-
nuclearz-axis.14-17

Though the wave functionsΨ(na,nb) provide an adequate
description of the bending vibrations, any proper linear com-
bination of the wave functions for the degenerate levels also
furnishes an adequate representation. The vibrational angular
momentum is not quantized by theΨ(na,nb) states, and it is of
particular interest to choose a linear combination that satisfies
this quantization. The exact form of this linear combination is
described elsewhere.15-17 For the current presentation it is only
necessary to know that these wave functions are eigenfunctions
of both the vibrational Hamiltonian and vibrational angular
momentum operators, giving rise toN + 1 degenerate energy
levels with E ) (N+1)hV. The vibrational angular momenta
for the states arejz ) Lp, with L ) N, N -2, ...-(N-2), -N.

B. Semiclassical Mechanical Representation.Child19 has
described degenerate harmonic oscillators in terms of semiclas-
sical action-angle variables and provided the relationship
between the oscillator’s semiclassical and quantum mechanical
descriptions. The degenerate bend’s classical Hamiltonian is
given by eq 2,

whereλ, the bend’s normal-mode eigenvalue, equals 4π2V2, and
Pa andQa are the normal mode’s momentum and co-ordinate,
respectively. The actions are shown in eqs 3 and 4,

and their associated angle variables, which range between 0 and
2π, areRI andRj, respectively. The energy for the degenerate
bends isE ) Iω, whereω ) 2πV. As discussed in the next
section, the motion associated with the 2-dimensional (2D)
Hamiltonian of the degenerate bends is elliptical, whereRI

describes the motion around the ellipse, andRj defines the
orientation of the major-axis of the ellipse in the molecular
plane. The transformations between these action-angle variables
and the normal-mode coordinates and momenta are given by
eqs 5a-d.

The above equations suffice for choosing initial conditions
for the degenerate bend’s 2D Hamiltonian. The energy and
angular momentum for the quantum state are given by the
actionsI and jz, and the anglesRI andRj are chosen randomly
between 0 and 2π. However, for the problem considered here,
initial conditions are chosen for all (3n - 5) degrees of freedom
of the molecular Hamiltonian. For this multidimensional
sampling, it is convenient to choose initial conditions using
normal-mode coordinates and momenta. The classical normal-

mode motion associated with the degenerate bends is described
in the next section.

C. Classical Mechanical Representation.Depending on the
relative phase of the two degenerate bend modes, the classical
motion for their zero-point energy (zpe) level may contain
vibrational angular momentum. In the following, classical
representations of the degenerate linear bends are described with
and without zpe. The condition considered is the one in which
each of the bend modes contains the same energy.

1. Vibrational Angular Momentum zpe Not Included.The
energy in each degenerate bend isNhV/2, if each of the bends
has the same energy and if zpe is not included. The value ofL
is set by the difference in the phase of the two bending motions.
The classical energy for each bend mode, as denoted by that
for mode a, is given by eq 6,

with maximumPa andQa of P° ) (2Ea)1/2 andQ° ) (2Ea/λ)1/2.
One co-ordinate moves in thex,z-plane and the other in the
y,z-plane, and their time dependencies may be written by eqs
7a-b,

whereæ is the difference in the phase of the two bends. For
thex,z-bend, att ) 0 all of the energy is potential. The normal-
mode momenta are the time derivatives of these coordinates
(i.e.. eqs 8a-b).

The vibrational angular momentum is given by eq 9.

The maximum value for the vibrational angular momentum (i.e.,
jz ) Np) occurs when the two modes are 90° out-of-phase (i.e.,
æ ) 90°). For this case, when thex,z-mode is at its classical
turning point with all of its energy in potential, they,z-mode is
at its potential minimum with all of its energy in kinetic. This
condition may be used to determine the vibrational angular
momentum, which isjz ) Q°P° ) Np. For theL ) -N state,
the sign ofP° is reversed. The value ofæ for the remainingL
states is found by setting thex,z-mode at its classical turning
point, as above, with all of its energy in potential and choosing
a value ofPy,z, for motion in they,z-plane, so that the vibrational
angular momentum equalsLp. Thus, jz ) Q°Py,z ) Lp with
Py,z/P° ) L/N. From eqs 8a and 8b, the phase difference between
the motions in thex,z- andy,z-planes is thenæ ) sin-1(L/N),
so that the vibrational angular momentum becomes eq 10.

The initial value forQy,z, for motion in they,z-plane, is [2Ea

- (P° sin æ)2]/2. For L ) 0, æ ) 0 and the two modes vibrate
in-phase. When thex,z-mode is at its classical turning point
with Qx,z ) Q°, the coordinate for theQy,z mode is alsoQ°.

The rotational energy associated with the vibrational angular
momentum is given by eq 11,

H ) (Pa
2 + Pb

2)/2 + λ(Qa
2 + Qb

2)/2 (2)

I ) (N + 1)p (3)

jz ) Lp (4)

Qa ) [(I + jz)/ω]1/2 cos(RI + Rj) (5a)

Qb ) [(I - jz)/ω]1/2 cos(RI - Rj) (5b)

Pa ) -[(I + jz)/ω]1/2sin(RI + Rj) (5c)

Qa ) -[(I + jz)/ω]1/2sin(RI - Rj) (5d)

Ea ) NhV/2 ) (Pa
2 + λQa

2)/2 (6)

Qx,z(t) ) Q° cos(2πVt) (7a)

Qy,z(t) ) Q° cos(2πVt - æ) (7b)

Px,z(t) ) -P° sin(2πVt) (8a)

Py,z(t) ) -P° sin(2πVt - æ) (8b)

jz ) Qx,zPy,z - Qy,zPx,z (9)

jz ) Q°P° sin æ ) Np sin æ (10)

Erot ) jz
2/2IL (11)
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wherejz ) Lp, andIL is the moment of inertia for theL state.
As described above, for theL ) 0 state, the two bend modes
vibrate in-phase with their energy oscillating between all-
potential and all-kinetic with a period of 1/(2V).18 There is no
rotational angular momentum, andErot ) 0. For theL ) N state,
IL is a constant and does not change during the vibrational
motion. For the mass-weighted normal-mode coordinates, this
IL is given byIL) (Q°)2. This is seen by replacingæ in eq 7b
by 90°, so thatQy,z(t) ) Q° sin(2πVt). The mass-weighted radius-
squared for the vibrational angular momentum motion is then
[Qx,z(t)2 + Qy,z(t)2] ) (Q°)2. Becausejz ) Q°P° for theL ) N
state,Erot is (P°)2/2 ) Ea. Thus, one-half of the total energyE
for the two bending modes is rotational, and the other half is
the potential energy of the fixed radius rotation.

For the remainingL states,IL is not a constant and is given
by eq 12.

Thus, the rotational energy of the degenerate bends changes
with time. The average value forIL(t) may be determined by
inserting the expressions in eqs 7a and 7b forQx,z(t) andQy,z(t)
into eq 12 and averaging over one vibrational period (i.e., eq
13).

It is straightforward to show that the integrals in brackets is
equal toV-1, so that<IL(t)> ) (Q°)2. Thus, for the vibrational
angular momentum states withL * |N|, the average rotational
energy of the degenerate bend motions is given by eq 14.

whereE is the total energy. This expression also holds for the
L ) |N| states withæ ) 90°. However, as described above for
these states,Erot is constant during the bending vibration, and
an average is not required.

2. Vibrational Angular Momentum zpe Included.With zpe
included, the total classical energy for the two bend modes is
E ) (N + 1)hV. The energy of the zpe level ishV and, depending
on the relative phase of the two modes, this level can have
vibrational angular momentumjz. If the two modes are in-phase
thenjz ) 0, butjz ) p if they are 90° out-of-phase. As discussed
above, quantum mechanically, the zpe level does not have
vibrational angular momentum. Nonzero values ofjz are
associated with excited bend levels, withjz ) Lp, L ) N, N-2,
...,-(N-2), -N, and N ) na + nb. The vibrational angular
momentum is given by eq 15.

With zpe included, the maximum value for the relative phase
(æ) between the two bend modes is less than 90° for the L )
|N| states, because settingæ ) 90° results injz ) (N + 1)p.
The selection ofæ for different L-states, includingL ) |N|,
follows the presentation in the previous section. Thex,z-mode
is placed at its classical turning point withQx,z) Q° andPx,z )
0. A value for the momentum (Py,z) for the other mode is chosen
so that the vibrational angular momentum equalsLp. The
resulting value ofPy,z is P°L/(N +1), so thatjz ) Q°Py,z )
Q°P°L/(N + 1) ) Lp. The phase difference between the motions
in thex,z- andy,z-planes is thenæ ) sin-1[L/(N + 1)]. For the
L ) N state,æ * 90° andæ ) sin-1[N/(N + 1)].

Because the two bends are not 90° out-of-phase for theL )
N state, the motion associated with the vibrational angular
momentum for this state is not circular but is elliptical, as are
the otherL-states. Thus, the rotational energy for eachL-state
is an average for one vibrational period and is found from the
average moment of inertia (i.e.,<IL(t)> in eq 13). The
expression for<Erot> is given by eq 16 and is similar to eq
14.

The total energyE is (N + 1)hV.
3. Classical Motion.It is of interest to consider the classical

dynamics in Cartesian coordinates for different vibrational
angular momentum states of the above normal-mode model,
and Figure 1 gives plots ofQx,z(t) versusQy,z(t) (i.e. Eqs 7a and
7b, for CO2). The vibrational frequency for the degenerate linear
bend is 667 cm-1. The phase angleæ is 90° for the L ) N )
3 state, with no zpe, and the motion is circular. The remaining
three states have a phase angle less than 90°, and their motion
is elliptical. Because the normal-mode model has a linear
transformation between normal-mode coordinates and Cartesian
displacement coordinates,20 these plots also describe the motion
of each of the O-atoms in thex,y-plane. For the one state it is
circular, but it is elliptical for the other three.14,15,17

For the motions in Figure 1, each of the degenerate bends
contains one-half of the total energy, and this fixes the major-
axis at 45° from thex- andy-axes of the plane for their elliptical
motion. Random orientation of the major-axis in this plane (Rj

for the semiclassical description in Section II.B) is obtained by
randomly rotating the molecule (see the next section).

The motions in Figure 1 are initiated with thex,z-mode at its
classical turning point, andQy,z is set by the phase angleæ (eq
7b). For this 2D model, the resulting motion is independent of
the initial value forQx,z and will lie on the circle/ellipse in

IL(t) ) Qx,z(t)
2 + Qy,z(t)

2 (12)

〈IL(t)〉 ) (Q°)2[∫0

ν-1

cos2(2πνt) dt + ∫0

ν-1

cos2(2πνt +

æ) dt]/ν-1 (13)

<Erot> ) sin2 æ(Np)2/2(Q°)2 ) (L/N)2 E/2 (14)

jz ) (N + 1)p sin æ (15)

Figure 1. Plots ofQx,z(t) versusQy,z(t) for CO2, with CO2 prepared in
vibrational angular momentum states withN ) 3 andL ) 3 and 1.
The motion is determined from eqs 3a and 3b of the normal-mode
model. Plots are given for states with and without vibrational angular
momentum zpe. The normal-mode coordinates are in units of
(amu)1/2 Å.

<Erot> ) [L/(N + 1)]2E/2 (16)
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Figure 1. However, as described in the following, the interest
here is in including vibrational angular momentum states as part
of the (3n - 5) vibrational degrees of freedom of a linear
molecule. All of these degrees of freedom are coupled, and the
classical motion (i.e., trajectory) for the molecule will depend
on the initial value forQx,z. Thus, it is necessary to select the
initial value for Qx,z randomly, and this is done by choosing a
random phase 2πR for this mode so thatQx,z ) Q° cos(2πR).1

The angle for modeQy,z (eq 7b) is then 2πR - æ. HereR is a
fresh random number between 0 and 1.

III. Selecting Initial Cartesian Coordinates and Momenta
for Vibrational Angular Momentum States

A. Algorithm Without Vibrational Angular Momentum.
Initial Cartesian coordinates and momenta for a polyatomic
molecule with degenerate bend motions, and vibrational angular
momentum states, may be selected by a minor modification of
an algorithm used to select quasiclassical initial conditions for
polyatomic molecules. This algorithm, described in detail
previously,1 is briefly reviewed in the following procedure: (1)
The first step is to determine the molecule’s normal-mode
frequencies (ω ) 2πV) and normal-mode eigenvector (L ) by
diagonalizing its mass-weighted Cartesian force constant ma-
trix.20 (2) For a mode-specific simulation, the quantum numbers
(ni) for the normal-modes are either specified or chosen
randomly from their Boltzmann distributions. The total vibra-
tional energy isEυ

o ) ∑(ni +1/2)hVi. (3) The normal-mode
energies are transformed to normal-mode coordinates (Qi) and
momenta (Pi) by choosing a random phase for each normal-
mode. (4) The normal modeQ and P are transformed to
Cartesian coordinatesq and momentap for N atoms using the
normal-mode eigenvectorL .20 (5) Because normal modes are
approximate for finite displacements,20 a spurious angular
momentum (j s) may arise following this transformation.20,21This
spurious angular momentum is calculated. (6) The rotational
angular momentum and its components are added. A nonlinear
molecule is treated as a symmetric top with rotational quantum
numbersJ andK. If J andK are specified, the components of
the angular momentum are found from eqs 17a-d,

whereR is a random number. For thermal experiments, it is
usually accurate to samplej andjz from their classical Boltzmann
distributions,22 with jx andjy, found from eqs 17c and 17d. The
componentsjx, jy, and jz, form the desired angular momentum
vector j°. Equilibrium coordinates for linear polyatomic mol-
ecules are placed on thez-axis with its rotational angular
momentum (j) initially along thex- or y-axis; e.g.j ) jx. (7)
The angular momentumj° is added to the molecule by forming
the vector shown in eq 19,

and adding the rotational velocityω × r i to each of the atoms,
where

andI -1 is the inverse of the inertia tensor.23 (8) The rotational
energy (E°r) is calculated from angular momentum compo-
nents and the principal moments of inertia. The total energy of
the molecule is the sum of its vibrational and rotational energies,
that is,E° ) E°υ + E°r. (9) The actual internal energy (E) for
the Cartesian coordinates and momenta chosen from the above
steps is calculated using the correct Hamiltonian and compared
with the intended energy (E°). If they do not agree within some
acceptance criterion (i.e., 0.1% in VENUS24), the Cartesian
coordinates and momenta are scaled assuming the energy is
quadratic in momenta and coordinate displacement from equi-
librium (i.e., eq 2.27 in ref 1). Any spurious center-of-mass
translational energy is subtracted from the molecule, and the
procedure loops back to step five where the spurious angular
momentum is calculated. If the energies do agree within the
acceptance criterion, the molecule is randomly rotated about
its center-of-mass in thex,y,z-frame.

B. Algorithm with Vibrational Angular Momentum.
Selecting initial conditions for a specific vibrational angular
momentum state of a linear polyatomic molecule requires
choosing Cartesian coordinates and momenta for the molecule
that correspond to its vibrational angular momentum quantum
numbersN andL, as well as its vibrational and external rotation
quantum numbers. This is accomplished by the following minor
modifications of the above algorithm (1) In step 2 of the above
algorithm, the quantum numbers for the two degenerate bends
(na and nb) are equated. If zpe is not included, energy (E )
NhV/2) is assigned to each of the bend modes, whereN ) na +
nb andV is the bend frequency. If zpe is included,E ) (N +
1)hV/2 is assigned to each of the bend modes. (2) To assign the
quantum numberL to the degenerate bends, the normal-mode
coordinates and momenta for the two bends are not chosen
randomly as described in step 3 above. Instead, they are chosen
with the proper relationship as described in Sections II.B and
II.C, that is,

whereQ° ) (2E/λ)1/2, P° ) (2E)1/2, andλ ) 4π2V2. If zpe is
not included, then sinæ ) L/N. With zpe included, sinæ )
L/(N + 1). TheR term is a random number between 0 and 1.
(3) With the equilibrium coordinates for the linear molecule
placed on thez-axis, the above normal-mode momenta and
coordinates for the two degenerate bends add angular momen-
tum jz ) Lp about thez-axis. The total angular momentum added
to the moleculej° is then a vector sum of the rotational angular
momentumjx and the vibrational angular momentumjz. The
vibrational angular momentumjz is properly added by the phase
relationship between the two degenerate bend modes, and eqs
18 and 19 in step seven of the above algorithm addjx. After
the Cartesian coordinates and momenta are scaled, eqs 18-20
ensure the molecule contains both the correct rotational and the
vibrational angular momenta.

IV. Illustrations of Choosing Initial Conditions for
Vibrational Angular Momentum States

The algorithm described above, for selecting vibrational
angular momentum states as part of quasiclassical sampling of

Qa ) Q° cos(2πR) (20a)

Pa ) -P° sin(2πR) (20b)

Qb ) Q° cos(2πR - æ) (20c)

Pb ) -P° sin(2πR - æ) (20d)

j ) xJ(J + 1)p (17a)

jz ) Kp (17b)

jx ) (j2 - jz
2)1/2 sin(2πR) (17c)

jy ) (j2 - jz
2)1/2 cos(2πR) (17d)

j ) j° - j s (18)

ω ) I-1j (19)
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vibrational and rotational energy levels, has been implemented
in the general classical trajectory chemical dynamics computer
program VENUS.24 The algorithm is applicable to any vibra-
tional angular momentum state specified by the quantum
numbersN and L. In the following, the application of this
algorithm is illustrated by selecting vibrational angular momen-
tum states for CO2 with N ) 3 andL ) 3 and 1. Vibrational
angular momentumjz is added to the molecule, with no external
rotational angular momentum. Applications of this algorithm
are compared by selecting initial conditions with and without
zpe in both the vibrational angular momentum states and the
symmetric and asymmetric stretch modes. A harmonic CO2

potential described previously,25 with stretch and bend force
constants of 15.050 mdyn/Å and 0.784 mdyn Å/rad2, respec-
tively, and an equilibrium C-O bond length of 1.170 Å, was
used for these applications.

A. Initial Conditions with no Stretch zpe. Figure 2 gives
plots of the O-atom motion in thex,y-plane for trajectories
calculated for 0.5 ps with the above potential energy function
and for theN ) 3 state withL ) 3 and 1. This integration time
is on the order of magnitude of the time it takes for two reactants
to collide in a trajectory simulation, given their initial separation.
The initial conditions for the trajectories in Figure 2 have no
zpe in the CO2 stretch modes. Without vibrational angular
momentum zpe, the motion of the O-atom for theL ) N ) 3
state is nearly circular and is similar to that for the normal-
mode model in Figure 1. For theL ) 1 state without vibrational
angular momentum zpe and for theL ) 3 and 1 states with
vibrational angular momentum zpe, the phase angle is less than
90°, and the motion of an O-atom is that of a rotating ellipse
and not a “fixed elliptical”, as found from the normal-mode
model.

There are several possible origins of the small fluctuations
away from “exact” circular motion for theL ) N ) 3 state
without vibrational angular momentum zpe. Centrifugal distor-
tion, which occurs as a result of the vibrational angular
momentum, elongates the C-O bonds. This would increase the
moment of inertia for a fixed bend angle and cause a change in
the bend angle to maintain the constant vibrational angular
momentum. Also, as pointed out in much earlier work,26 even
if the potential energy function is harmonic in internal coordi-
nates, as is the case here, there are coupling terms in the
Hamiltonian. Such couplings between the bends and the
stretches may affect the circular motion. In addition, the
rectilinear transformation,27 in step four of Section III.A, causes
a small extension of∼0.007 Å for each C-O bond, which
introduces a small vibrational motion in each bond and perturbs
the circular motion.

To assess the importance of the latter effect, a curvilinear
transformation from normal mode to Cartesian coordinates was
performed, which changes the bend angle without disturbing
the C-O bond lengths. The resulting O-atom motion for theN
andL states without and with vibrational angular momentum
zpe is shown in Figure 3. Comparing Figures 2 and 3 shows
that the curvilinear transformation results in a circular type
O-atom motion with somewhat weaker perturbations than those
found for the rectilinear transformation, but the perturbations
remain. Apparently, centrifugal distortion and/or bend-stretch
couplings affect the motion of theL ) N ) 3 state without
vibrational angular momentum zpe. The curvilinear initial
conditions for theL ) N ) 3 state give an O-atom motion
comprised of C-O bond lengths that vary from 1.165 to 1.177
Å and a O-C-O angle that varies between 166.1 and 168.2°.
For the normal-mode model, these coordinates are fixed at 1.170
Å and 167.15°. As discussed below, using a high force constant
for the C-O bond stretch to approximately “fix” the bond at
its equilibrium value and eliminate centrifugal distortion and
bend-stretch coupling results in a circular plot for the curvi-
linear model.

There are significant differences between the O-atom motion,
for the elliptical states, given by the normal-mode model in

Figure 2. Plots of motion in thex,y-plane for an O-atom of CO2, with
CO2 prepared in vibrational angular momentum states withN ) 3 and
L ) 3 and 1. Zero-point energy is not included in the CO2 stretch modes.
Plots are given for states with and without vibrational angular
momentum zpe. Initial conditions are chosen for the trajectories
including the rectilinear transformation of step 4 in Section III.A. The
trajectories are integrated for 0.5 ps. The Cartesian coordinates are in
units of angstroms.

Figure 3. Same as Figure 2, except a curvilinear transformation is
used for step 4 in Section III.A.
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Figure 1, and the actual Cartesian dynamics in Figures 2 and 3.
For these states the O-C-O angle is not fixed, and centrifugal
distortion, which is not allowed in the normal-mode model, is
an important contributor to the Cartesian dynamics. The angular
momentum about thez-axis (i.e.,jz) is a constant of the motion
and is related to the angular velocityωz via jz ) Izωz. As the
O-C-O angle changes,Iz changes, which causesωz to decrease
or increase. These changes inωz will perturb the C-O bond
lengths. In particular, as the angle increases, approaching 180°,
Iz becomes quite small and results in a large angular velocity.
This is expected to promote extension of the C-O bonds. Figure
4 gives plots of the O-C-O angle and the C-O bond length
versus time for theN ) 3, L ) 1 state without vibrational
angular momentum zpe and for the curvilinear transformation.
There is a regular “beat” between the bend angle and the bond
length, which affects the O-atom motion and gives the rotating
elliptical motion for the actual Cartesian dynamics. The C-O
bond length changes between 1.131 and 1.210 Å.

Changes in the C-O bond length can be constrained by using
an artificially high force constant for the C-O bond stretch.
Figure 5 shows the O-atom motion for the same states and
conditions as in Figure 3, except the C-O stretch force constant
has been increased by a factor of 1,000. This results in a nearly
exact circular motion for theL ) N ) 3 state without vibrational
angular momentum zpe and motion for the other states, which
is no longer that of a rotating ellipse and begins to approach
that of a fixed ellipse. However, distortions in the elliptical

motion remain as a result of small changes in the C-O bond
lengths, which vary between 1.1701 and 1.1703 Å.

The trajectories in Figure 2 were calculated for 0.5 ps, which,
as discussed above, is a representative time required for two
reactants to collide in a bimolecular simulations. To obtain a
picture of the long-time O-atom motions for these trajectories,
they were integrated for 20 ps, and the results are shown in
Figure 6. The motion for theL ) 3 state, without vibrational
angular momentum zpe, is similar to the short-time result.
However, for the other three states, the short-time trajectories
do not identify the long-time O-atom motions. The motion for
the L ) 3 state with vibrational angular momentum zpe has a
tubular shape. For theL ) 1 states, there is an inner oval region

Figure 4. Plot of the O-C-O angle and C-O bond length vs time
for theN ) 3, L ) 1 trajectory in Figure 3, without vibrational angular
momentum.

Figure 5. Same as Figure 3, except a C-O stretch force constant 1,-
000 times larger than the 15.050 mdyn/Å value for the potential function
is used.

Figure 6. Same as Figure 2, except the trajectory integration time is
20 ps.
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about thex,y-axis origin that is not accessible to the trajectories.
This region is larger for the trajectory without vibrational angular
momentum.

B. Initial Conditions with Stretch zpe. Adding zpe to the
C-O bonds affects the atomic-level dynamics for the vibrational
angular momentum states. In Figures 7 and 8, the O-atom
motion for representative trajectories of the vibrational angular
momentum states, with zpe in the stretch modes, is plotted for
different periods of time. Figure 7 depicts the motion for 0.5
ps, which is on the order of magnitude of the time it takes for
two reactants to collide in a trajectory simulation, given their
initial separation. For the short-time dynamics in Figure 7, the

O-atom motions appear highly irregular28 and is quite different
from those in Figures 1-3.

To study the longer-time motions of individual trajectories
for the vibrational angular momentum states, 10 trajectories of
20 ps in length were calculated for each of these states. The
long-time motions are significantly different from the short-
time motions, and the 10 trajectories for each of the vibrational
angular momentum states have qualitatively similar motions.
Furthermore, the trajectories with and without vibrational
angular momentum zpe, for either theL ) 1 or 3 state, are
similar if they have the same random phases for the C-O stretch
modes. For both of theL ) 3 states, the motion is tubular, as
shown in Figure 8. The motions of the 10 trajectories for each
state differ in the diameter of the tube and the size of the inner
region in which the trajectory does not move. The two
trajectories plotted for theL ) 1 states are representative of
the 20 ps O-atom motions for these states. However, as shown
in Figure 9, if these trajectories are integrated for 60 ps their
overall motions are similar to those for theL ) 3 states. The
requirement of a longer integration time for theL ) 1 states, to
obtain the tubular motion found for theL ) 3 states, is related
to the different angular velocities for these two states, as shown
in the following.

An important question, for the states with C-O stretch zpe,
is whether the vibrational angular momentumjz is primarily
about the O-C-O internuclear axis. Plotted in Figure 10 are
graphs of the angleø between thez-axis and the O-O
internuclear axis versus time. The plots are very similar for
trajectories with and without vibrational angular momentum zpe
if they have the same random phases in the C-O stretch modes,
and the plots are only given for the trajectories without
vibrational angular momentum zpe. Plots for 10 trajectories are
included in each graph. An important observation from the plots
is thatø is small and less than 5° for the approximate time of
0.5 ps or less that it takes for two bimolecular reactants to collide

Figure 7. Same as Figure 2, except zpe is included in the stretch
modes. These are representative trajectories for the vibrational angular
momentum states (see text). The motion is plotted for 0.5 ps.

Figure 8. Same as Figure 7, except the trajectory motion is plotted
for 20 ps.

Figure 9. Plots of the O-atom motions, for theL ) 1 trajectories in
Figure 8, for 60 ps.
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in a chemical dynamics simulation. Thus, the vibrational angular
momentum is primarily about the internuclear axis as the
collision occurs. For longer times, theø-angle appears to
oscillate periodically with a period of 13.8-15.1 ps for theL
) 3 states and 42.9-48.8 ps for theL ) 1 states. For 10
trajectories with vibrational angular momentum zpe included,
these periods are 14.2-16.0 ps and 43.2-50.2 ps for theL )
3 and 1 states, respectively. The period is approximately 3 times
longer for theL ) 1 state as compared to theL ) 3 state, which
is consistent with an approximate factor of 3 smaller angular
velocity for theL ) 1 state. The maximum value of theø-angle
differs for the 10 trajectories in Figure 10 and varies from 7.5-
33.6° for the L ) 3 state and 5.5-24.8° for the L ) 1 state.
With vibrational angular momentum zpe included for the 10
trajectories,ømax varies from 5.4°-24.6° and 4.7°-21.3° for
the L ) 3 and 1 states, respectively. Including vibrational
angular momentum zpe has the effects of increasing the period
for the ø-angle motion and decreasing the value ofømax.

C. Regular Versus Irregular Motion and the Effect of
Anharmonicity. The plots in Figures 8-10 indicate that the
classical motion is regular and not irregular (i.e., chaotic)28 for
the vibrational angular momentum states. To assess this in more
detail, coordinate Fourier spectra28,29 were calculated for
trajectories with vibrational angular momentum zpe and without
and with C-O stretch zpe. The diagnostic for regular dynamics
is a sharp spectrum, versus a grassy spectrum for irregular
dynamics.28,29 These trajectories have regular spectra, and
examples are illustrated in Figure 11. Thus, the classical motion

for the vibrational angular momentum states considered here is
regular with zpe in each degree of freedom.

Figure 10. Plots versus time of the angle (ø) between thez-axis and
the O-O internuclear axis, for trajectories calculated for theL ) 1
and 3 states without vibrational angular momentum zpe. Plots for 10
trajectories are included in each graph. The upper graph is forL ) 3
and the lower one forL ) 1.

Figure 11. Coordinate Fourier spectra of a classical trajectory for the
L ) N ) 3 vibrational angular momentum state, with vibrational angular
momentum zpe and without (upper) and with (lower) C-O stretch zpe.
Spectra are shown for the symmetric stretch,S1 ) (∆r1 + ∆r2)/x2,
and the bend,S2 ) ∆θ. The trajectories for these spectra are shown in
Figures 6 and 8.

Figure 12. The same plots as in the upper-right panels of Figures 7
and 8, except a Morse function is used for the C-O stretch potential.
The plot on the top is for 0.5 ps as in Figure 7, and that on the bottom
is for 20 ps as in Figure 8. The trajectories include both vibrational
angular momentum and C-O stretch zpe.
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Differences between the CO2 harmonic and 0-1 transition
frequencies are small, and their harmonic/anharmonic ratios are
1.05, 1.03, and 1.02 for the symmetric stretch, bend, and
asymmetric stretch, respectively.30,31 These small anharmonic
corrections are not expected to significantly alter the classical
motion for the CO2 zpe level. Nevertheless, to investigate any
possible effects of anharmonicity, the C-O bond stretches were
treated as Morse functions instead of the harmonic oscillators
used for the above calculations. The dissociation energyDe was
set to 722 kJ/mol,32,33 and this value and the force constant
15.050 mdyn/Å for the harmonic model25 were used to
determine theâe parameter equal to (f/2De)1/2 ) 2.51 Å-1. With
the inclusion of this anharmonicity, the classical motions of the
vibrational angular momentum states studied here are similar
to those for the harmonic model. This is illustrated in Figure
12, where the results of calculations for theL ) N ) 3 state,
with both vibrational angular momentum and stretch zpe, are
plotted. The plots in Figure 12 should be compared with those
in the upper-right panels of Figures 7 and 8, and it is seen that
the classical motions are very similar for the anharmonic and
harmonic potentials.

V. Summary

In this work, an algorithm for selecting quasiclassical initial
conditions for vibrational angular momentum states in chemical
dynamics simulations is presented and analyzed. Applications
of this algorithm are considered for initial conditions without
and with zpe included in the vibrational angular momentum
states and the C-O stretching modes. The O-atom motions in
thex,y-plane, determined from classical trajectories in Cartesian
coordinates and from the normal-mode model, are compared
for theN ) 3 andL ) 3 and 1 vibrational angular momentum
states. The inclusion of zpe in the C-O stretch modes has a
significant effect on the O-atom motions for the vibrational
angular momentum states. Without C-O stretch zpe, the
normal-mode model predicts a fixed O-C-O angle for theL
) N ) 3 state and a circular motion in thex,y-plane, with the
O-C-O equilibrium structure lying on thez-axis. For theN )
3 andL ) 1 state, the O-C-O angle bends, and the motion is
elliptical.

For the classical trajectory calculations without C-O stretch
zpe, the O-atom motion for theL ) N ) 3 state without
vibrational angular momentum zpe is circular and is similar to
that for the normal-mode model. However, for theL ) N ) 3
state with vibrational angular momentum zpe and the twoL )
1 states without and with vibrational angular momentum, the
motion is not elliptical as it is for the normal-mode model. The
short-time (i.e., 0.5 ps motion) for these latter three states is
that of a rotating ellipse, whereas for long-times this ellipse
rotates around the origin in thex,y-plane to form a tubular
structure. The origin of the difference between the actual
Cartesian O-atom motion and that predicted by the normal-mode
model arises from coupling between the O-C-O bend and
C-O stretch modes, including centrifugal distortion. Cartesian
O-atom motions, approximating the ellipse of the normal-mode
model, are obtained by using a very high force constant for the
C-O stretch mode.

Including zpe in the C-O stretch modes introduces consider-
able complexity into the O-atom motions for the vibrational
angular momentum states. In comparison to the states without
C-O stretch zpe, for which there is a single trajectory for each
state, the states with C-O stretch zpe do not display such a
unique trajectory, because a random phase is chosen for each
of the C-O stretch modes. The short-time O-atom motions for

the trajectories are highly irregular and do not appear to have
any identifiable characteristics. However, the O-atom motions
for trajectories integrated for substantially longer periods of time
acquire unique properties. Furthermore, for these longer integra-
tion times, trajectories with and without vibrational angular
momentum zpe are similar, for both theL ) 3 andL ) 1 states,
if they have the same random phases for the C-O stretch modes.
The long-time O-atom motion becomes tubular for trajectories
integrated to∼14 ps for theL ) 3 states and to∼44 ps for the
L ) 1 states. For short integration times of 0.5 ps, an
approximate time it takes two bimolecular reactants to collide,
the vibrational angular momentumjz remains aligned along the
O-C-O internuclear axis. However, for longer times this is
not the case, and this property is studied by determining the
time dependence of the angleø between thez-axis and the O-O
internuclear axis. Plots ofø(t) are periodic, with a period of
∼14-16 ps for theL ) 3 states and∼43-49 ps for theL ) 1
states. The maximumø-angle in theseø(t) plots has a range of
values and depends upon the random phases for the C-O stretch
modes.

The algorithm used here to choose quasiclassical initial
conditions for a polyatomic molecule, with degenerate bends,
assumes the vibrational energy is a sum of the (ni + 1/2)hVi

nondegenerate bend normal-mode energies plus (N + 1)hV for
the degenerate bends. This energy only approximates the
molecule’s actual vibrational energy levels, because it does not
include couplings between the normal modes and the depen-
dence of the energy on the vibrational angular momentum
quantum numberL. A more accurate expression for the CO2

energy is given by eq 21,30,31,34,35

wheredi, the degeneracy of the mode, equals 2 for mode 2 and
equals 1 for modes 1 and 3. It would be of interest to use this
energy expression, for the quasiclassical sampling algorithm in
Section III, so that this energy expression could be used to
choose initial conditions for the spectroscopic energy levels.
This may be done in the future.

As described above, the algorithm used here to select
quasiclassical initial conditions for vibrational angular momen-
tum states, is based on the zeroth-order normal-mode model.
In future work it may be of interest to use Einstein-Brillouin-
Keller (EBK) semiclassical quantization35-44 to determine
coordinates and momenta for a specific vibrational angular
momentum state. For the states without C-O stretch zpe the
EBK quantization will depend on theN andL quantum numbers,
and this 2D quantization may be relatively straightforward.
However, with C-O stretch zpe included, the quantization will
also depend on the symmetric and asymmetric stretch modes,
and this four-dimensional quantization will be more challenging.
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